
The Hashemite University

Faculty of Prince Al-Hussein Bin Abdullah II

for Information Technology

Information Technology Department

Reinforcement Learning for Drone
Swarm Control

A project submitted

in partial fulfillment of the requirements for the

B.Sc. Degree in Data Science and Artificial Intelligence

By
BASHAR AMEEN MOHAMMED HLAIL (2136887)
EMAD ISSA MOHAMMAD MAKLOUF (2140641)

MARAM SAMEER MOHAMMAD ALMASARWEH (2144526)

Supervised by
Mo’taz Abdul Aziz Al-hami

2024

CERTIFICATE

It is hereby certified that the project titled Reinforcement Learning for Drone
Swarm Control submitted by undersigned, in partial

fulfillment of the award of the degree of “Bachelor in Data Science and Artificial
Intelligence”

embodies original work done by them under my supervision.

All the analysis, design and system development have been accomplished by the
undersigned. Moreover, this project has not been submitted to any other college or

university.

Emad Issa Makhlouf
(2140641)

Signature

Bashar Ameen Hlail
(2136887)

Signature

Maram Sameer Almasarweg
(2144526)

Signature

Abstract

This study conducts a comprehensive analysis of the utilization of drones in disas-
ter management scenarios, aiming to enhance response efficiency and effectiveness in
dealing with such emergency situations. Drawing upon a thorough review of available
scientific and technological literature in this field, analytical examination of several
real-world cases of drone usage in disaster-stricken areas, and the utilization of simu-
lation models to evaluate the impact of this technology on response operations, this
study provides a comprehensive and detailed insight into the benefits and challenges
of employing drones in this context.

The findings of this study suggest that drones serve as valuable tools for enhancing
disaster preparedness and response capabilities, as they can play a significant role in
various aspects of disaster management, including rapid damage assessment, effective
execution of search and rescue operations, and timely provision of essential supplies
and assistance to affected areas.

In light of these results, the study concludes that integrating drones into disaster
response strategies can lead to quicker and more targeted interventions, ultimately
resulting in reduced loss of life and property, and increased efficiency and effectiveness
of relief and recovery efforts.

The potential impact of this research lies in its ability to guide decision-makers and
stakeholders in the field of emergency management towards the adoption of modern
technologies such as drones to improve disaster response systems, thereby contributing
to a positive shift towards more resilient and adaptive disaster management systems
and ensuring the safety and security of affected communities.

Acknowledgements

We would like to express our deepest gratitude to Professor Motaz Al-Hami, our su-
pervisor, for his guidance, support, and encouragement throughout this project. His
expertise have been instrumental in the successful completion of this work.

We also extend our heartfelt thanks to Professors Majdi Maabreh and Ahmad Al-
Oqaily for their support and assistance in overcoming various challenges during the
course of this project. Their help and encouragement were greatly appreciated.

i

Contents

Acknowledgements i

List of Figures iv

List of Tables v

3 Introduction 1
3.1 What are Drones? . 1
3.2 Applications of Drones . 2

3.2.1 Aerial Photography and Videography 2
3.2.2 Delivery and Logistics . 3
3.2.3 Agriculture and Farming . 3
3.2.4 Other Notable Uses . 3

3.3 Types of UAVs . 4
3.4 Regulations and Safety Considerations 6

3.4.1 Drone Registration and licensing 6
3.4.2 No-Fly Zones and Restricted Areas 6
3.4.3 Privacy and security concerns 6

3.5 What are Drone Swarms? . 6
3.6 Motivation . 7
3.7 Problem Statement . 7

3.7.1 Specific challenges in drone swarm coordination 7
3.7.2 Relevance to Real-World Scenarios 8
3.7.3 Research Questions . 8

4 Literature Review 9
4.1 Existing Systems . 9

4.1.1 Collaborative Mission Planning & Autonomous Control Technol-
ogy (CoMPACT) System . 9

4.1.2 Aerostack2 . 10
4.1.3 AerialCore . 12

4.2 Limitations in Existing Systems . 12

ii

CONTENTS Drones Project

5 Preparing the Environment 13
5.1 Drone System Overview . 14
5.2 Choosing the Right Flight Stack . 16

5.2.1 ArduPilot Introduction & Installation 18
5.2.2 MAVLink Protocol . 19
5.2.3 Software in the Loop (SITL) Simulation 20
5.2.4 MAVProxy . 22

5.3 Ground Control Station . 22
5.3.1 Comparing different GCSs . 22
5.3.2 QGroundControl Installation & Testing 24

5.4 Gazebo . 25
5.4.1 Gazebo Introduction . 25
5.4.2 Gazebo Installation & Testing 25

5.5 Testing Intelligent Drone Navigation 26
5.6 ROS2 . 28

5.6.1 ROS2 Introduction . 28
5.6.2 Communication Between Nodes 28
5.6.3 The DDS Middleware . 28
5.6.4 ROS2 Installation . 29

5.7 Micro XRCE-DDS . 29
5.7.1 How Micro XRCE-DDS Works 30
5.7.2 Micro XRCE-DDS Installation & Configuration 31

5.8 MAVROS . 31
5.8.1 MAVROS Installation . 32

5.9 Hadoop . 32
5.9.1 Hadoop Installation . 32

5.10 Integration of Hadoop with ROS2 . 33
5.11 YOLOv11 . 34

5.11.1 Implementation in the Drone Swarm 34
5.12 Drone Swarm Auto Setup Package . 35

6 Reinforcement Learning Agent Development & Integration 37
6.1 Reinforcement Learning Basics . 37
6.2 Design of the RL Agent . 39

6.2.1 Problem Definition . 39
6.2.2 State Space . 39
6.2.3 Action Space . 40
6.2.4 Reward Function . 40

6.3 RL Agent Development . 41
6.3.1 Model Architecture . 41
6.3.2 Training Process . 42
6.3.3 Challenges and Solutions . 42

6.4 Integration with the Drone Swarm System 42
6.4.1 Communication Setup . 43
6.4.2 Deployment Pipeline . 43

iii

CONTENTS Drones Project

6.4.3 Simulation-to-Real Transfer . 43
6.5 Testing and Evaluation . 43

6.5.1 Evaluation During Training . 44
6.5.2 Simulation Results . 44
6.5.3 Limitations . 45

7 Conclusion 46
7.1 Project Summary . 46
7.2 Future Work . 46

iv

List of Figures

3.1 The yearly ongoing growth in UAV market.[1] 2

4.1 The 6 layer structure of CoMPACT systems 10
4.2 Overview of the software components provided by the Aerostack2 environment[12]. 11

5.1 Intelligent drone system diagram.[17] 14
5.2 MAVLink high level message flow[3] . 20
5.3 SITL Architecture[3] . 21
5.4 MAVProxy running on ubuntu. 22
5.5 QGroundControl test flight . 24
5.6 Screenshot of Gazebo. 26
5.7 The closer drone starts moving with the other remaining stationary. . . 27
5.8 The closer drone arrives. 27
5.9 Micro XRCE-DDS.[10] . 30
5.10 General Micro XRCE-DDS Architecutre.[22] 30
5.11 Hadoop integration flow. 33
5.12 YOLOv11 model architecture[19]. 34

6.1 The Markov Decision Process . 37
6.2 CPDE basic workflow . 38
6.3 grid environment for the agents. The 3 blue points in the center are the

drones at their launch position, and the red dots are the targets 39
6.4 Average number of steps per episode over all timesteps plot. 44
6.5 Average rewards per episode over all timesteps plot. 44
6.6 Single agent going towards a target. 45

v

List of Tables

3.1 Summary of Sector Applications [11] 4
3.2 Comparison of Different UAV Designs [11] 5

5.1 Comparison of PX4 and ArduPilot . 17
5.2 Comparison of QGroundControl and Mission Planner 23

6.1 Reward function structure for the RL agent. 40
6.2 Hyperparameters used during RL agent training. 42

vi

3 — Introduction

3.1 What are Drones?

Generally, a drone refers to an increasingly autonomous machine. Mostly they can
fly, but they might move by walking or rolling on the ground. They frequently have
parts and technologies similar to those found in robotics. They tend to include a range
of sensors that monitor the state of the environment and localize drones in the en-
vironment. They also have systems, often based on machine learning algorithms or
other optimizing approaches, that allow them either to plan and execute paths or con-
trol forces, torques, and velocities. They sometimes must identify objects and inform
planners of changes in state, as well as remain within defined specifications. A drone’s
sensing systems generally consist of a variety of sensors. These sensors can include in-
ertial measurement units (IMUs), which contain accelerometers and gyroscopes; global
positioning systems (GPS) to determine location; ultrasonic, laser distance or time-of-
flight cameras to sense distance from the ground or other objects or drones; monocular
or stereo cameras to estimate distance and inform planning through other image-based
information; and radio frequency ID (RFID) sensors, which determine, through various
configurations of readers and tags, positions and types of objects in space – sometimes
in environments where radio-frequency (RF) waves vary too much in their patterns as
they propagate through the space.[25][18]

Generally, when you think of a drone, your mind probably conjures an image of
a small unmanned aircraft, either fixed wing or multirotor. But the term goes well
beyond just that hardware. Drones with a range of sizes and applications have be-
come common. They can feature onboard technologies ranging from television-quality
cameras to LIDAR to radio-frequency identification scanners and heat sensors. And in
some settings, they can even use machine learning to identify objects within data that
they collect. Today, most engineering and computer science departments at universi-
ties have begun to build and study drones. As a result, if they have participated in
high school science fairs or art contests, high school students should be familiar with
drones as well.

1

CHAPTER 3. INTRODUCTION Drones Project

3.2 Applications of Drones

Drones, also known as Unmanned Aerial Vehicles (UAVs), have revolutionized various
industries by enhancing operational efficiency, reducing costs, and accessing difficult
or remote areas. The UAV market is experiencing significant growth, with projections
suggesting an increase from USD 27.43 billion in 2022 to USD 91.23 billion by 2030,
reflecting a compound annual growth rate (CAGR) of 16.3%. This surge is attributed
to the expanding commercial applications of drones in sectors like delivery, agriculture,
and media, amidst growing technological advancements and increasing governmental
investments.[1]

Figure 3.1: The yearly ongoing growth in UAV market.[1]

3.2.1 Aerial Photography and Videography

Drones have become indispensable for the field of aerial photography and filmmaking,
providing unique perspectives and high quality images at significantly reduced costs
compared to traditional methods. They are simple to operate and can be purchased for
less than USD 500. The filming and photography segment is one of the largest in the
UAV market, and it has accounted for the largest market share in 2022[1]. Drone pho-
tographers use both, vertical and oblique photographs for planning land-use projects,
movie production, environmental studies, archaeology, power line inspection, oil and
gas surveying, surveillance, commercial advertising, and even artistic projects[2].

2

CHAPTER 3. INTRODUCTION Drones Project

3.2.2 Delivery and Logistics

The delivery and logistics sector has seen transformative changes with the introduction
of drones, which offer speedy and cost-effective solutions for package delivery. This
segment is anticipated to grow rapidly, supported by the increasing use of drones by
e-commerce giants like Amazon for delivering goods directly to consumers. Drones are
used to deliver medical supplies in difficult terrains. For instance, Zipline (US) used its
drones to carry blood samples for COVID-19 testing and supply vaccines to countries
in Africa that lack proper healthcare infrastructures. In these areas, flying drones is
more effective than driving and can be a valuable substitute for high-priced solutions
such as helicopters.[2]

3.2.3 Agriculture and Farming

Drones in agriculture are being used for a range of applications from crop monitoring
and health assessment to planting and pesticide spraying. The technology allows for
precise agriculture, enhancing productivity while minimizing waste and environmental
impact. Companies like Bayer are leveraging drones to improve crop protection strate-
gies across vast agricultural lands, highlighting the role of UAVs in sustainable farming
practices.[1]

3.2.4 Other Notable Uses

In addition to the primary uses listed above, drones are also employed in various
other roles in different sectors due to their low costs and increased versatility. In the
recent years we’ve seen increased usage of drones by governmental agencies and private
enterprise alike. (Table 1.1)

3

CHAPTER 3. INTRODUCTION Drones Project

Table 3.1: Summary of Sector Applications [11]
Government Fire Fighting Energy Sector

• Law enforcement
(Police, civil security)

• Border security

• Coastguard

• Forest fires

• Other major
incidents

• Emergency rescue
(i.e. Mountain
rescue)

• Oil and gas industry
distribution
infrastructure

• Electric grids /
distribution networks

Agriculture, Forest and
Fishery

Earth Observation and
Remote Sensing

Communication and
Broadcasting

• Environment
monitoring

• Crop dusting

• Optimizing use of
resources

• Climate monitoring

• Seismic events

• Major incidents and
pollution monitoring

• VHALE platforms as
proxy satellites

• MALE/SMUAC as
short-term, local
communication
coverage

3.3 Types of UAVs

UAV drones come in a variety of shapes and sizes, and can be categorized based on
many different aspects such as design, price range, size, power source, or use case. In
this section, we’ll discuss the 4 main types of drones.

1. Multi-rotor Drones
Multi-rotor drones feature a structure that extends to accommodate several pro-
pellers, with variations from tricopters, which have three propellers, to octo-
copters, equipped with eight propellers. These drones are categorized as rotary-
wing drones, which achieve lift and take off vertically by rotating blades that
force air downwards.

Applications of these drones include aerial photography and videography, map-
ping and surveying from the air, inspecting assets, monitoring agricultural fields,
and delivering products over short distances.

2. Single-rotor Drones
Single-rotor drones look similar to small helicopters, featuring a main rotor that
sustains the drone’s body. Like their multi-rotor counterparts, they fall under
the category of rotary-wing drones.

Their applications include aerial mapping and surveying, aerial surveillance and
patrolling, delivering heavy payloads, and conducting search and rescue missions.

4

CHAPTER 3. INTRODUCTION Drones Project

3. Fixed-wing Drones
Much like an airplane, a fixed-wing drone uses wings for lift instead of rotors.
These drones are generally large, fuel-powered, and predominantly used by the
military, necessitating a runway for takeoff and landing.

Their applications include aerial mapping and surveying, inspecting assets, de-
livering payloads over long distances, and unmanned aerial refueling.

4. Vertical Takeoff and Landing Fixed-Wing (VTOL FW) Drones
VTOL (Vertical Take-Off and Landing) fixed-wing hybrid drones combine the
best features of rotary-wing and fixed-wing designs, allowing them to lift off ver-
tically like a helicopter and transition to horizontal flight like an airplane. These
drones are versatile, eliminating the need for a runway and enabling efficient
long-range flight.

Their applications include rapid aerial surveys, precision agriculture, emergency
medical deliveries, and extended surveillance missions.

Table 3.2: Comparison of Different UAV Designs [11]
Types Advantages Disadvantages Example

Fixed wing
Long range En-
durance

Horizontal take-off,
requiring substan-
tial space or sup-
port

Tilt wing
Combination of
fixed wing and
VTOL advantages

Expensive Technol-
ogy complex

Single-rotor
VTOL Maneuver-
ability High pay-
loads possible

Expensive Compa-
rably high mainte-
nance requirements

Multi-rotor
Inexpensive, Low
weight Easy to
launch

Limited payloads
Susceptible to wind
due to low weight

5

CHAPTER 3. INTRODUCTION Drones Project

3.4 Regulations and Safety Considerations

In Jordan, the regulation of unmanned aircraft systems (UAS) or drones is governed
by the Jordanian Civil Aviation Regulation (JCAR) established under the authority
of the Jordanian Civil Aviation Law 41/2007 and its amendments.[8]

3.4.1 Drone Registration and licensing

Operators need to apply for a UA Operator Authorization (UOA) from the Civil Avia-
tion Regulatory Commission (CARC). This process includes providing documentation
demonstrating compliance with JCAR and includes security clearances, operational
descriptions, and a list of unmanned aircraft with details like serial number, color, and
mass. The UOA is valid for one year, subject to conditions such as compliance with
the JCAR, maintaining valid CARC security clearance, and allowing CARC access to
the operator’s facilities and records.

3.4.2 No-Fly Zones and Restricted Areas

Specific airspaces are designated where flight is restricted or prohibited. Restricted
areas are those where flights are allowed under specific conditions, while prohibited
areas are completely off-limits for UA flights. Operations near airports, heliports,
helicopter landing sites, or airfields are strictly regulated, with no flights allowed within
an 8 km perimeter unless specifically approved.

3.4.3 Privacy and security concerns

Operators must obtain security clearances for the organization, and any use of aerial
photographic equipment on UAs requires prior authorization by the Jordanian Security
Sector. Operators are required to ensure that flights do not intentionally or uninten-
tionally invade privacy. Procedures must be established to maintain a minimum safety
distance from people not involved in the operation and from fixed or mobile objects,
ensuring no less than 50 meters unless prior authorization has been obtained from
CARC. Operators are also required to report any incidents that might endanger safety,
including any that compromise privacy or security.

3.5 What are Drone Swarms?

In nature, many biological organisms compensate for the limitations of individual mem-
bers by forming groups or clusters that communicate and coordinate their actions. This
phenomenon is exemplified by wolves, which optimize their hunting strategies through
coordinated efforts; birds, which reduce energy expenditure by flying in flocks dur-
ing migration; bees, which exhibit sophisticated swarming behaviors when searching
for new nesting sites and foraging; and ants, which demonstrate emergent intelligence
capable of solving complex problems, such as identifying the shortest path to food

6

CHAPTER 3. INTRODUCTION Drones Project

sources[15]. Similarly, drone technology has been increasingly modeled on these nat-
ural behaviors to overcome the constraints faced by individual drones. Drone swarm
technology, in particular, has become a hot field of research in recent years, leading to
numerous practical applications. Such as surveillance[21], search and rescue[9], payload
transportation[14], reconnaissance and mapping[23], and public communication[20].
Which will be discussed in further detail in the following chapters.

3.6 Motivation

Drones have rapidly evolved from niche gadgets to pivotal tools across various indus-
tries. Coupled with advancements in swarm intelligence algorithms, graph traversal
algorithms, and artificial intelligence, specifically reinforcement learning, drone swarm
technology is set to revolutionize tasks requiring autonomy and precision. Reinforce-
ment learning, a type of machine learning where agents learn and make decisions based
on their interaction with the environment, is particularly useful for managing the com-
plexities of drone swarm coordination in dynamic settings.

While individual drone operations have been extensively studied, the coordinated
efforts of swarms, especially using reinforcement learning, remains underexplored. This
project aims to bridge the gap by developing algorithms that improve autonomy, reduce
communication needs, and enhance decision making capabilities in uncertain dynamic
environments.

The implications of successfully coordinating drone swarm through reinforcement
learning extends well beyond the immediate applications. Economically, is could reduce
the costs and time needed for operations like search and rescue or disaster recovery.
Societally, it could enhance safety and effectiveness, potentially saving lives during
critical missions. Technologically, it could pave the way for the development of more
robust autonomous systems capable of complex, independent operation without human
control.

3.7 Problem Statement

3.7.1 Specific challenges in drone swarm coordination

The primary objective of this project is to address several critical challenges in drone
swarm coordination that have been identified as major hurdles in deploying these tech-
nologies effectively in real-world applications. These challenges include:

• Scalability of Control: Current drone coordination systems struggle to maintain
efficiency and effectiveness as the number of drones increases. The complexity of
managing large swarms in unison without exponential increases in computational
and communication resources remains a significant technical challenge[4].

• Intelligent Path-Finding: Drone swarms should find optimal paths to maximize
coverage and minimize needless energy consumption. Current path-finding al-
gorithms often rely on simple optimization heuristics, which can compromise

7

CHAPTER 3. INTRODUCTION Drones Project

control and communication between drones, leading to inefficient operations and
increased energy use.[26].

• Real-time Adaptability: Drone swarms must be able to respond immediately to
changing environmental conditions and unforeseen obstacles. Current models
lack the necessary flexibility, often resulting in delayed responses or suboptimal
decision-making in fast-paced scenarios[4].

• Robustness Against Environmental Uncertainties: Operating in diverse and un-
predictable environments, such as those encountered during natural disasters,
poses a severe challenge for drone swarms. The ability to maintain operational
integrity and swarm resilience under such conditions is not yet reliable[24].

• Communication and Coordination: Effective communication and coordination
among drones are crucial for cohesive swarm behavior. Current systems often
suffer from latency, bandwidth limitations, and communication failures, which
can lead to disorganized movements and collisions. Ensuring reliable, low-latency
communication in dynamic and potentially congested environments is a signifi-
cant challenge[24].

3.7.2 Relevance to Real-World Scenarios

• Search and Rescue Operations: In situations where time is of the essence, the
inability of drones to scale effectively and find optimal paths to insure maximum
coverage could be the difference between life and death.

• Disaster Recovery Efforts: The robustness of drone swarms in unpredictable en-
vironments directly affects their utility in assessing damage and aiding in disaster
recovery, where conditions can severely limit the availability of human-led efforts.

• Public Communication: In rural areas where public communication may not be
available, drones must be able to communicate to coordinate themselves effec-
tively in order to insure maximum coverage of wireless connectivity[20].

3.7.3 Research Questions

Based on the challenges we’ve presented, this project aims to explore the following
research questions:

1. How can reinforcement learning be used to enhance the scalability of drone swarm
control without compromising operational efficiency?

2. Can reinforcement learning find optimal polices that contribute to the robustness
of drone swarms, enabling them to maintain functionality in diverse and dynamic
environmental conditions?

3. Can reinforcement learning be used to optimize the path-finding process to maxi-
mize coverage and minimize energy usage?

8

4 — Literature Review

4.1 Existing Systems

In recent years, the field of drone swarm control and coordination has seen significant
advancements with the development of various sophisticated systems. These systems
aim to enhance the autonomy and capabilities of unmanned aerial vehicles (UAVs) in
performing complex missions with minimal human intervention. The primary focus of
these systems is to manage large-scale UAV swarms efficiently, ensuring robust per-
formance in dynamic and uncertain environments. This section provides an overview
of some of the prominent architectures developed for drone swarm control and coordi-
nation. Each architecture presents unique approaches and solutions to the challenges
associated with UAV swarm operations.

4.1.1 Collaborative Mission Planning & Autonomous Control
Technology (CoMPACT) System

The CoMPACT system is an advanced hierarchical control architecture designed for
managing large-scale swarms of UAVs. Its primary objective is to execute complex
military missions such as Intelligence, Surveillance, and Reconnaissance (ISR), Sup-
pression of Enemy Aerial Defenses (SEAD), and Destruction of Enemy Aerial Defenses
(DEAD). The system is structured into six coordinated hierarchical layers that encom-
pass tasks and objectives from the mission planning stage to UAV task execution[7].
These layers are show in figure 4.1.

1. Mission Planning Layer: Located at the command center, this layer involves
mission preplanning and high-level objective setting. Evolutionary algorithms
are used for mission planning, generating 4D trajectories for mission execution.

2. Mission Execution Layer: Also at the command center, this layer executes
and synchronizes tasks in line with the pre-specified timeline, utilizing Finite
State Machines (FSM) for managing sequences of functional tasks.

3. Function Execution Layer: Functions like ISR, SEAD, and DEAD are man-
aged by semi-global leaders who respond to environmental changes and team
capabilities.

9

CHAPTER 4. LITERATURE REVIEW Drones Project

4. Team Task Execution Layer: Teams are coordinated by local team leaders
who manage sequences of tasks and interact with other teams as needed.

5. Platoon Task Execution Layer: Each platoon is led by a platoon leader and
consists of UAV tasks and trajectories executed using FSM, reactive assignment,
and reactive path planning.

6. Vehicle Task Execution Layer: Located at each UAV, this layer includes
dynamic path re-planning, collision avoidance, and local task execution.

Figure 4.1: The 6 layer structure of CoMPACT systems

The CoMPACT system employs a combination of evolutionary algorithms for mis-
sion planning, hybrid automata-based task execution, and biologically-inspired emer-
gent swarm behaviors. This combination enables the system to be scalable, robust
to intermittent communication losses and delays, and adaptable to dynamic changes
in the environment. Through simulation and experimentation, the CoMPACT system
has demonstrated effectiveness in performing ISR, SEAD, and DEAD missions under
conditions of uncertainty and vehicular losses.

4.1.2 Aerostack2

Aerostack2 is an advanced framework developed to address the fragmentation and
lack of standardization in aerial robotics. Built on ROS 2 middleware, Aerostack2
offers a modular software architecture that supports a wide range of capabilities for
autonomous drone operations. Key features include platform independence, versatility
in handling different types of drones, and a logical level for easy mission specifica-
tion. Aerostack2 also provides pre-programmed components that simplify the engi-
neering process and is open-source, which democratizes access to its technology[12].

10

CHAPTER 4. LITERATURE REVIEW Drones Project

Aerostack2’s components are organized hierarchically across several layers, each re-
sponsible for different aspects of drone operation as shown in figure 4.2.

Figure 4.2: Overview of the software components provided by the Aerostack2
environment[12].

1. Middleware Layer: This foundational layer includes the Linux operating sys-
tem, ROS 2, and general software libraries like OpenCV.

2. Inter-process Communication Layer: This layer provides components for
facilitating communication between concurrently operating processes, using stan-
dardized data structures and communication mechanisms defined by ROS 2 and
specific to aerial robotics.

3. Interfaces with Platforms and Sensors: Aerostack2 offers interfaces to con-
nect various aerial platforms and sensors with the framework. These interfaces
ensure compatibility with both physical and simulated platforms, supporting a
broad range of hardware configurations.

4. Basic Robotics Functions: This layer includes components implementing es-
sential functions such as state estimation, motion control, and emergency han-
dling. These components are designed to be general and reusable, with alternative
algorithms available as plugins.

5. Behaviors Layer: The behaviors layer includes components that encapsulate
specific robot skills, such as taking off, landing, and following a path. Each
behavior supports robust execution monitoring and task refinement, facilitating
the implementation of complex mission plans.

11

CHAPTER 4. LITERATURE REVIEW Drones Project

6. Mission Control Layer: This top layer provides tools for specifying and su-
pervising mission plans. Aerostack2 offers a Python API and behavior trees for
flexible mission planning, along with user interfaces for real-time monitoring and
control.

4.1.3 AerialCore

AerialCore is an aerial system developed with ROS Noetic, designed for full onboard ex-
ecution. It can be deployed on any multi-rotor vehicle equipped with a PX4-compatible
flight controller, suitable for both indoor and outdoor environments. The system sup-
ports multi-robot experiments via Nimbro network communication and offers both agile
flying capabilities and robust control[6].

4.2 Limitations in Existing Systems

Despite the advancements in aerial robotics frameworks, several limitations persist,
hindering the full potential of drone swarm operations.

• Coordination and Scalability: Effective coordination and scalability of drone
swarms are still significant challenges. While some frameworks support multi-
agent systems, the complexity of managing large swarms in dynamic environ-
ments requires more sophisticated coordination algorithms and better handling
of communication delays and failures.

• Incompatibility and Integration Issues: The diversity of hardware platforms
and sensors poses integration challenges. While frameworks like Aerostack2 strive
for platform independence, systems like AerialCore still face difficulties in inter-
facing with different hardware configurations, which can hinder their widespread
adoption and ease of use.

• Narrow Focus: Many existing frameworks have a narrow focus, often limited to
low-level control. This specialization makes them less useful for comprehensive
applications that require integration of multiple functionalities, such as mission
planning, state estimation, and autonomous control.

• Lack of Standardization: One of the primary challenges in aerial robotics is
the lack of standardization. While ground robotics has seen widespread adoption
of standardized frameworks like Navigation2 and MoveIt, aerial robotics remains
fragmented. Different research groups develop their own frameworks, leading to
isolated efforts that are difficult to integrate.

12

5 — Preparing the Environment

In any complex engineering project, setting up the working environment is a crucial
initial step. For this project, which focuses on drone swarm control and coordination
using reinforcement learning, the preparation of a robust and comprehensive environ-
ment is essential. This environment includes the installation of several key components:
a flight stack, a ground control station, a simulation environment, and ROS2 (Robot
Operating System 2). Each of these components plays a vital role in ensuring the
smooth operation and testing of the UAV swarm, facilitating effective development,
and allowing for thorough experimentation.

The flight stack is the core software that controls the flight operations of the drones.
It provides the necessary algorithms and interfaces for drone navigation, stabilization,
and mission execution. Installing a reliable flight stack ensures that the drones can
perform the required maneuvers accurately and respond to commands efficiently.

The ground control station (GCS) is the interface through which operators can mon-
itor and control the UAVs. It provides real-time telemetry data, mission planning tools,
and a user-friendly interface for sending commands to the drones. A well-configured
GCS is crucial for effective mission management and for ensuring that operators can
intervene when necessary.

The simulation environment is another critical component, providing a safe and
controlled space to test and validate the UAV swarm algorithms. Simulation allows
for extensive testing of different scenarios, which might be too risky or impractical to
perform in real life. It helps in identifying potential issues and optimizing performance
without the risk of damaging the actual drones.

ROS2 is a middleware framework that facilitates communication between the vari-
ous components of the drone system. It supports the integration of sensors, actuators,
and algorithms, enabling seamless data exchange and coordination. ROS2’s modular-
ity and extensive libraries make it an invaluable tool for developing complex robotic
systems like drone swarms.

The preparation of the environment in this project can be compared to the data pre-
processing workflow in machine learning. Just as data preprocessing involves cleaning,
transforming, and organizing data to ensure that machine learning models can learn
effectively, preparing the drone environment involves setting up the necessary software
and tools to ensure that the UAVs can operate and be controlled effectively. Both
processes are foundational steps that significantly impact the success of the project. In
machine learning, proper preprocessing leads to better model performance and more
accurate predictions. Similarly, in drone swarm control, a well-prepared environment

13

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

leads to more reliable operations, better coordination, and ultimately, more successful
missions.

By meticulously setting up the flight stack, ground control station, simulation en-
vironment, and ROS2, we lay a solid foundation for the subsequent development and
testing phases of this project. This preparation ensures that we can efficiently imple-
ment, test, and refine the reinforcement learning algorithms needed for effective drone
swarm coordination.

5.1 Drone System Overview

A typical intelligent drone system consists of multiple components that work together
to effectively control the drone. Figure 5.1 showcases these different components.[17]

Figure 5.1: Intelligent drone system diagram.[17]

1. Flight Board Controller: At the core of the system is the flight controller,
which acts as the brain of the drone. The flight controller contains embedded
sensors such as IMUs, accelerometers, and compasses. These embedded sensors
are crucial for maintaining stability and providing real-time data on the drone’s
orientation, acceleration, and heading.

In addition to the hardware components, the flight controller includes a software
aspect through the installation of autopilot flight stacks. These flight stacks, such

14

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

as ArduPilot or PX4, provide the essential algorithms and protocols that enable
autonomous flight, navigation, and control. They handle tasks like stabilizing
the drone, executing predefined flight paths, and responding to commands from
the ground control station.

2. Flight Sensors:The next crucial component of drones is the flight sensors, which
provide accurate and reliable position estimates for the drone. These sensors are
essential for navigation, stability, and obstacle avoidance.

GPS is one of the most common flight sensors, providing precise information
about the drone’s location and enabling accurate positioning and waypoint nav-
igation.

LiDAR is another important sensor, used primarily for altitude estimation and
obstacle detection. By emitting laser pulses and measuring the time it takes for
them to bounce back from surfaces, LiDAR helps the drone to create detailed 3D
maps of its surroundings and maintain a safe altitude.

Other common sensors include barometers for measuring atmospheric pressure
to determine altitude, optical flow sensors for detecting ground motion, and ul-
trasonic sensors for short-range distance measurement.

3. Telemetry Radio: The next crucial component is the telemetry radio, which
allows the drone to communicate with other devices via radio signals. This
communication link is essential for transmitting real-time data between the drone
and the GCS or other drones in a swarm.

The telemetry radio sends and receives data such as flight status, sensor read-
ings, and control commands. This enables operators to monitor the drone’s
performance, adjust flight parameters, and ensure the drone follows its planned
mission. Common telemetry radio systems operate on frequencies like 915 MHz
or 2.4 GHz, providing reliable and long-range communication.

In swarm operations, the telemetry radio also facilitates inter-drone communi-
cation, allowing drones to coordinate their actions and share information about
their environment. This is critical for tasks that require collective behavior, such
as formation flying or collaborative mapping.

4. Ground Control Station: As mentioned earlier, the GCS serves as an interface
to view telemetry information about the drone and send commands. The GCS
is installed on a ground-based device such as a laptop, tablet, or phone and is
directly accessed by the user.

The GCS software provides a user-friendly interface for monitoring the drone’s
status, viewing real-time data, planning missions, and sending control commands.
This allows operators to manage the drone’s flight path, adjust settings, and
respond to any issues during the mission.

5. Companion Computer: The companion computer is an optional component
of drones, providing extra processing power for additional utilities such as extra

15

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

storage or deploying AI models for tasks like image recognition. This component
runs on a Linux-based operating system, making it easy to develop and run
custom code. The companion computer can handle complex algorithms and data
processing tasks that the primary flight controller might not be able to manage.
This includes running machine learning models, processing high-resolution images
and videos, and executing advanced navigation algorithms.

6. Additional Sensors: The companion computer may require additional sensors
for specific missions, such as cameras, 2D LiDARs, and IR (infrared) sensors.
These sensors provide the companion computer with the necessary data to per-
form specialized tasks.

7. Flight Actuators: Given the input from the sensors, companion computer, and
GCS commands, the flight controller issues commands to the actuators to perform
specific actions. Actuators include components such as motors and servos, which
execute the flight controller’s instructions.

Motors are responsible for controlling the drone’s propellers, enabling it to take
off, maneuver, and maintain stable flight. The flight controller adjusts the speed
of each motor to achieve the desired movement and orientation.

Servos are used to control movable parts of the drone, such as camera gimbals
or control surfaces on fixed-wing drones. By adjusting the position of these
servos, the flight controller can stabilize cameras, change the drone’s direction,
or manipulate other mechanical components.

5.2 Choosing the Right Flight Stack

The drone’s ”brain” is known as the autopilot. It typically includes flight stack software
running on a real-time operating system (RTOS) on flight controller (FC) hardware.
The flight stack provides essential stabilization and safety features, along with pilot
assistance for manual flight and automation of tasks like takeoff, landing, and executing
predefined missions.

Some autopilots also incorporate a general-purpose computing system for higher-
level command and control, supporting advanced networking, computer vision, and
other features. This might be implemented as a separate companion computer, but it
is increasingly likely to become a fully integrated component in the future.[16]

Choosing the right flight stack is paramount for our project, as it could determine
the scope of our work and the flexibility of our development process. as such, two
notable flight stacks stand out; PX4 and ArduPilot. Both of these flight stacks
are popular options among hobbyists and professionals alike. Table 5.1 provides a
comparison between these two flight stacks.

PX4 is usually used in research when drone developers require fine-grained control
of their drone system’s flight controls and stabilizers. This means that the default
configurations for PX4 are relatively naive and may only work under lab conditions.

16

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Meanwhile, ArduPilot has extremely sophisticated control systems. This prevents fine-
grained control of our flight controls but results in high-performance flight. ArduPilot
has also existed for longer than PX4 and, as such, is the more mature flight stack with a
richer and more robust feature set, extensive documentation, and a larger community.

Therefore, the decision was made to use ArduPilot as it aligns better with our
project requirements and abstracts away the nuanced fine-grained control that goes
well beyond the scope of our project.

Feature PX4 ArduPilot
License BSD License; changes do

not need to be shared with
the community

GPL License; changes must
be shared with the commu-
nity

Modularity Highly modular; allows cus-
tomization and integration
of custom modules and sen-
sors

Versatile but less modular
than PX4

Vehicle Support Primarily focused on aerial
vehicles but supports other
types as well

Supports a wide range of
vehicles including planes,
VTOLs, rovers, submarines,
and boats

Community and
Documentation

Active community with
continuous innovation;
documentation is not as
extensive as ArduPilot’s

Large, active community
with extensive documenta-
tion and support resources

Advanced Features Advanced autopilot capa-
bilities including obstacle
avoidance and GPS-denied
navigation

Comprehensive feature set
including support for vari-
ous mission-critical applica-
tions

Industry Adoption Widely adopted in commer-
cial drone industry; used for
industrial inspections, de-
livery drones, and aerial
photography

Popular among hobbyists
and researchers; strong
presence in both amateur
and professional domains

SDK and APIs Uses MAVSDK for high-
level programming and con-
trol

Uses DroneKit and
MAVROS for high-level
programming and control

Ease of Use More suited for users with
specific needs for precision
and advanced control

More user-friendly, espe-
cially for beginners due to
its extensive documentation
and community support

Table 5.1: Comparison of PX4 and ArduPilot

17

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.2.1 ArduPilot Introduction & Installation

Ardupilot is an advanced open-source autopilot software, designed to control autonomous
vehicles across multiple domains including aerial drones, ground vehicles, boats, and
even submarines. Initially developed in 2007 by members of the DIY Drones com-
munity, Ardupilot has evolved into a robust platform utilized worldwide in numerous
applications ranging from hobbyist projects to commercial and research operations.
This software provides a rich set of features and supports a wide array of hardware,
making it a versatile choice for building and operating unmanned vehicles[3]. Some of
the core features of ardupilot include:

1. Multi-Vehicle Support: Ardupilot is uniquely versatile, capable of control-
ling various types of vehicles such as multirotors, fixed-wing aircraft, helicopters,
rovers, boats, and submarines. Each vehicle type benefits from specialized con-
trol algorithms developed to maximize performance and stability in a wide range
of operating conditions.

2. Comprehensive Flight Modes: The software offers an extensive range of flight
modes, from basic manual and stabilized flight to fully autonomous missions.
These include Auto, Guided, RTL (Return to Launch), and Loiter, allowing
operators to match the flight mode to the mission requirements precisely.

3. Highly Configurable Mission Planning and Execution: Users can plan
missions with multiple waypoints, set actions at each waypoint, adjust flight
paths dynamically, and manage payload operations during the flight. This is
facilitated through integration with GCSs, which provide user-friendly interfaces
for detailed mission scripting and real-time vehicle monitoring.

4. Sensor and Peripheral Compatibility: Ardupilot supports a broad spectrum
of sensors and peripherals, enhancing the vehicle’s ability to navigate and perform
complex tasks. This includes GPS units, IMUs, optical flow cameras, rangefinders
(like lidars and sonars), and various communication peripherals using MAVLink,
CAN, and DroneCAN protocols for data exchange.

5. Advanced Safety and Redundancy Features: Safety is a critical aspect of
Ardupilot’s design, incorporating features like geo-fencing, battery failsafes, and
emergency landing procedures. It also supports hardware redundancy to enhance
reliability, particularly in commercial and high-risk operations.

6. Open Development and Community Support: Being open-source, Ardupi-
lot benefits from contributions by a global community of developers who con-
tinually enhance its capabilities. This collaborative environment helps keep the
platform at the technological forefront and fosters a supportive ecosystem for
users and developers alike.

Ardupilot is compatible with a range of flight controller hardware, the most promi-
nent being the Pixhawk family, including Pixhawk, Pixhawk 2, Pixhawk 4, and Pix-
hawk 5. It is also compatible with other controllers like the Cube Autopilot series and

18

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

boards from Matek. These flight controllers can be integrated with a variety of periph-
erals through interfaces such as I2C, UART, SPI, and CAN, allowing for a modular
and scalable vehicle design.

ArduPilot can be installed by cloning the GitHub repository provided on their
main website, where they offer OS-specific dependency installation scripts that must
be executed. While this step is fairly straightforward, dependency management has
proven quite problematic on Arch Linux due to an outdated installation script that was
incompatible with Python 3.12. As a result, we had to move our work to the virtual
machine provided by Dr. Majdi Maabreh, which was running on Ubuntu 22.04.4 LTS
(Jammy Jellyfish).

5.2.2 MAVLink Protocol

MAVLink, or Micro Air Vehicle Link, plays a crucial role in ArduPilot as a communi-
cation protocol that facilitates data exchange between the flight controller and external
devices, GCSs, on-board peripheral devices, and even other autonomous vehicles. It
is a lightweight, header-only message marshaling library designed for efficient, high-
latency, and noisy links typically found in drone applications[13]. Here are some of
MAVLink’s key features:

• Highly efficient. MAVLink 1 has only an 8-byte overhead per packet, including
start sign and packet drop detection, while MAVLink 2 has a 14-byte overhead
but offers greater security and extensibility. Its lack of additional framing makes
it ideal for applications with limited communication bandwidth.

• Extremely reliable. MAVLink has been used since 2009 for communication be-
tween various vehicles, ground stations, and other nodes over diverse and chal-
lenging communication channels with high latency and noise. It includes methods
for detecting packet drops and corruption, as well as for packet authentication.

• Supports numerous programming languages and runs on various microcontrollers
and operating systems, including ARM7, ATMega, dsPic, STM32, Windows,
Linux, MacOS, Android, and iOS.

• Allows up to 255 systems to operate concurrently on the network, including
vehicles and ground stations.

• Facilitates both offboard and onboard communications, such as between a ground
control station and a drone, and between a drone autopilot and a MAVLink-
enabled drone camera.

19

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Figure 5.2: MAVLink high level message flow[3]

MAVLink enables the transmission of telemetry data from the vehicle to the ground
control station and vice versa. This data can include position, velocity, attitude, bat-
tery status, and other vital flight information. It also allows operators to control the
vehicle remotely, send commands, and modify flight parameters in real-time, enhancing
the flexibility and responsiveness of operations.

5.2.3 Software in the Loop (SITL) Simulation

In drone systems, the general control cycle begins with the flight sensors measuring the
state of the drone. This state is then fed into the flight controller, which determines
the next action to take based on the control laws. These actions are then sent to the
actuators, which perform the actions. The sensors then measure the state again, and
the cycle repeats. SITL allows us to simulate this loop without any special hardware.
It takes advantage of the fact that ArduPilot is a portable autopilot that can run on
a wide variety of platforms, including a PC. When running in SITL, the sensor data
comes from a flight dynamics model in a flight simulator. ArduPilot has a wide range
of built-in vehicle simulators and can interface with several external simulators, which
will be discussed in greater detail in the following sections[3].

20

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Figure 5.3: SITL Architecture[3]

In real drone systems, the communication between different internal components of
the drone, such as sensors and the flight controller, predominantly uses electrical sig-
nals over communication protocols like I2C (Inter-Integrated Circuit) and SPI (Serial
Peripheral Interface). These protocols are chosen for their suitability for high-speed,
low-latency data transfer required by sensors like IMUs, GPS, barometers, and mag-
netometers. Additionally, Pulse Width Modulation (PWM) signals are often used to
control motors and electronic speed controllers (ESCs).

For external communication, including interactions between the flight controller,
companion computer, and GCS, the MAVLink protocol is used. This communica-
tion is typically facilitated via UART (Universal Asynchronous Receiver/Transmitter)
connections and radio telemetry modules. The companion computer and flight con-
troller communicate using MAVLink over interfaces such as UART, USB, CAN bus,
or Ethernet, depending on the specific hardware and requirements.

In SITL simulations, however, all communication between components, including
simulated sensors and the flight controller, occurs through MAVLink. This ensures
that the simulated environment mimics the communication protocols used in real-
world scenarios, with MAVLink messages being transmitted over network protocols
like UDP (User Datagram Protocol) or TCP (Transmission Control Protocol). This
use of MAVLink in SITL provides a realistic testing environment for drone software.

21

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.2.4 MAVProxy

MAVProxy is a powerful command-line based GCS that allows users to configure and
manage their drones through the MAVLink protocol. This initial setup through a CLI
ensures that basic configurations and initial troubleshooting can be done efficiently
before moving on to more complex GCS software with graphical interfaces[3].

It also acts as a MAVLink router, enabling communication between the drone and
various GCSs. This means it can forward MAVLink messages to multiple GCSs si-
multaneously, allowing for a more flexible and robust setup where multiple devices or
applications can monitor and control the drone at the same time[3].

MAVProxy is written in Python and is highly extensible through Python modules.
This makes it ideal for developers who need to customize their GCS setup or integrate
additional functionalities. Starting with MAVProxy allows for the development and
testing of custom modules before integrating them into other GCS software[5].

Installing MAVProxy first sets a solid foundation for drone configuration, commu-
nication, and testing. It provides essential functionalities and a robust environment for
managing ArduPilot-based systems, which complements the more user-friendly graph-
ical GCS installed later.

Figure 5.4: MAVProxy running on ubuntu.

5.3 Ground Control Station

5.3.1 Comparing different GCSs

When it comes to drone GCSs, two prominent options are QGroundControl and Mis-
sion Planner. Both are compatible with ArduPilot, but they have distinct features
and differences that may influence your choice based on specific needs and operating
environments.

22

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Table 5.2: Comparison of QGroundControl and Mission Planner

Feature QGroundControl Mission Planner

Platform Compatibility Cross-platform Windows, macOS, Linux
User Interface Clean, modern Feature-rich
Firmware Support PX4, ArduPilot ArduPilot
Advanced Features Geofencing, offline mapping Dataflash log analysis
Community Support Active community Robust ArduPilot support
Mobile Device Support Yes Limited
Ease of Use High Moderate
Best For General users Detailed configuration

1. QGroundControl: QGroundControl is a versatile and widely used GCS that
supports multiple platforms, including Windows, macOS, Linux, Android, and
iOS. This broad compatibility makes it highly accessible for a diverse user base.
QGroundControl is particularly noted for its clean, modern, and user-friendly
interface, which simplifies navigation and operation, making it suitable for both
beginners and experienced users. It supports both PX4 and ArduPilot firmware,
offering flexibility for users with different types of autopilots. QGroundControl
includes advanced features such as geofencing, dynamic geofencing, and offline
mapping capabilities, which enhance its functionality in various scenarios. The
active user community provides extensive support and resources, facilitating trou-
bleshooting and continuous learning. Its full support for mobile devices adds to
its convenience, especially for field operations using smartphones or tablets[3].

2. Mission Planner: Mission Planner is a highly feature-rich GCS primarily de-
signed for Windows, although it can be run on macOS and Linux using Mono,
albeit with some performance and compatibility issues. This GCS is well-known
for its detailed and customizable interface, providing comprehensive tools for
mission planning, real-time monitoring, and in-depth data analysis. Features like
dataflash log analysis and real-time data graph plots are particularly useful for
advanced mission planning and troubleshooting. Mission Planner is widely sup-
ported within the ArduPilot community, ensuring robust support and frequent
updates. However, its interface can be less intuitive compared to QGroundCon-
trol, which might pose a challenge for new users. The limited support for mobile
devices makes it more suited for desktop use. Mission Planner is ideal for users
who require detailed configuration and analysis tools, especially those operating
on Windows platforms[3].

Given our current requirements and operating system preferences, QGroundControl
is a practical choice, with the flexibility to switch to Mission Planner if your needs
evolve.

23

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.3.2 QGroundControl Installation & Testing

To install QGroundControl, these 3 steps had to be done:

1. Adding the user to the dialout group and removing ModemManager to ensure
proper access to serial ports.

2. Installing GStreamer plugins and other required libraries for video streaming and
application functionality.

3. downloading the latest QGroundControl AppImage, making it executable, and
then running the application.

After successfully installing QGroundControl, it was time to take the simulated
drone on a test flight. We’ll be using QGroundControl to assign a simple mission to
the drone. The mission will consist of the drone taking off, traveling to two distinct
waypoints, and then returning and descending.

Figure 5.5: QGroundControl test flight

24

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.4 Gazebo

5.4.1 Gazebo Introduction

The next step in our environment preparation was to install a 3D physics simulation
environment. This would allow us to test our drone’s collision avoidance capabilities,
image recognition, and search efficiency. One popular choice is Gazebo. Gazebo is a
highly respected simulation environment in the robotics community. It has been used
in numerous robotics simulation challenges for ground, marine, and space-based robots,
including the DARPA Robotics Challenge, the DARPA Subterranean Challenge, and
the Virtual RobotX Competition. Gazebo provides robust physics simulation, high-
quality graphics, and the ability to simulate a variety of sensors and objects, making it
an ideal tool for developing and testing complex robotic systems. Additionally, Gazebo
integrates well with ROS (Robot Operating System), enabling seamless testing and
development of robotic algorithms in a simulated environment before deployment in
the real world.

5.4.2 Gazebo Installation & Testing

The Gazebo installation process comprised of these general steps:

1. Setting up our system by installing necessary tools and libraries to support the
installation process.

2. Adding the Gazebo package repository to our system and installing Gazebo.

3. Cloning the ArduPilot Gazebo plugin repository, building the plugin, and con-
figuring our system to recognize the new plugin. This step integrates ArduPilot
with Gazebo, enabling detailed drone simulations.

4. Adjusting firewall settings to allow necessary network communications, ensuring
seamless operation of the simulation environment.

During the installation of Gazebo on Dr. Majdi’s virtual machine, we encountered
significant performance issues, with the simulation running extremely slow. The root
cause of this problem was the lack of nested virtualization support. This technology
allows a virtual machine to take advantage of hardware virtualization extensions, such
as Intel VT-x or AMD-V, which are used to improve the performance of virtual en-
vironments. Without nested virtualization, the virtual machine’s performance can be
severely degraded because it cannot fully utilize the host machine’s hardware capabil-
ities.

After encountering difficulties with enabling the nested virtualization setting on the
virtual machine, we decided to move our work to a local installation of Ubuntu 22.04.4
LTS (Jammy Jellyfish).

25

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Figure 5.6: Screenshot of Gazebo.

5.5 Testing Intelligent Drone Navigation

As a final test in the current environment, we wanted to initialize two SITL instances,
and have it so that whenever a waypoint is set only the closest drone would move
towards it with the other drone remaining stationary. This task could by achieved by
utilizing the Python PyMAVLink library. PyMAVLink is a Python library that pro-
vides a convenient interface for interacting with MAVLink protocol-based autopilots.
It allows for the creation, sending, and receiving of MAVLink messages, facilitating
communication between GCSs, drones, and other MAVLink-compatible devices. Py-
MAVLink is widely used for telemetry data retrieval, mission planning, and drone
control scripting.

26

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Figure 5.7: The closer drone starts moving with the other remaining stationary.

Figure 5.8: The closer drone arrives.

27

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.6 ROS2

5.6.1 ROS2 Introduction

The Robot Operating System (ROS2) is an advanced, open-source middleware frame-
work design to facilitate the development of robotic systems. It serves as a robust
platform for building modular, scalable, and distributed robotic applications. By en-
abling seamless communication between various software components, ROS2 allows us
to focus on functionality without being constrained by inter-process communication.

The ROS graph is a network of ROS2 elements processing data together at the
same time. It encompasses all executables and the connections between them. These
executables are called nodes and they represent the basic unit of computation in ROS2.
Nodes are typically responsible for one, modular purpose such as controlling drones or
processing camera input.

5.6.2 Communication Between Nodes

Nodes can communicate with other nodes within the same process, a different process,
or a different machine by exchanging data using the followsing primay communication
paradigms:

1. Topics (Publish/Subscribe): Nodes can send or receive messages via topics.
A publisher node sends message to a topic, while a subscriber node listens to
that topic for updates. for example, a drone node could publish its GPS data
on a GPS topic, while the swarm coordination node subscribers to that topic to
track that drone’s location in real time.

2. Services (Request/Response): For two-way communication, ROS2 provides
services, where one node sends a request, and another node processes that request
and sends back a response. This is useful for actions requiring immediate feed-
back, such as sending arm commands to drones and awaiting acknowledgment.

3. Actions (Goal/Feedback/Result): Actions enable long running tasks, allow-
ing nodes to set a goal, receive periodic feedback, and get the final result. For
example, a mission control node might send a drone the goal of exploring a spe-
cific area and receive status updates as the task progresses.

5.6.3 The DDS Middleware

At the core of ROS2’s communication system lies the Data Distribution Service (DDS),
a middleware that manages data exchange between nodes. DDS enables ROS2 to
support real-time, decentralized, and reliable communication.

The DDS protocol allows nodes to dynamically discover each other on the network
without requiring a centralized master node. This decentralized discovery process
enhances fault tolerance and simplifies deployment.

28

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

DDS allows for fine-grain control over the communication’s reliability, latency, and
bandwidth through QoS policies. For example, critical drone data , such as velocity
commands, can be configured with high reliability and low latency to ensure timely
and accurate execution.

One of DDS’s strengths is its flexibility in supporting multiple implementations.
These implementations differ in terms of features, performance, and licensing. We will
expand more on our choice of implementation in the following section.

5.6.4 ROS2 Installation

For our project, we chose ROS2 Humble Hawksbill as the primary version of ROS2
to work with. ROS2 Humble is a Long-Term Support (LTS) release, ensuring support
until 2027. ROS2 Humble was selected because it offers the latest advancements in the
ROS2 ecosystem while maintaining compatibility with our chosen technologies.

The installation of ROS2 Humble was carried out on devices running Ubuntu 22.04,
the recommended operating system for this version. Following the official ROS2 doc-
umentation, the steps included:

1. System Preparation: Adding the ROS2 repository, updating system depen-
dencies, and setting up the required keys.

2. Installing the Base Package: Installing the ros-humble-desktop package to
provide access to the core tools, visualization utilities (like Rviz2), and simulation
capabilities (like Gazebo).

3. Environment Configuration: Setting up the ROS2 environment by sourcing
the setup.bash file, which allows easy execution of ROS2 commands and integra-
tion with our development tools.

5.7 Micro XRCE-DDS

In our project, certain components, such as individual drones, operate on resource-
constrained hardware with limited processing power, memory, and network bandwidth.
To address these constraints, we’re using eProsima’s Micro XRCE-DDS (eXtremely
Resource-Constrained Environment DDS)[10], a lightweight implementation of the
Data Distribution Service (DDS) standard, specifically designed for embedded systems
with minimal resources.

29

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

Figure 5.9: Micro XRCE-DDS.[10]

Micro XRCE-DDS adopts a client/server model and comprises two key compo-
nents: the Micro XRCE-DDS Client and the Micro XRCE-DDS Agent. The clients
are lightweight libraries designed to operate in highly resource-constrained environ-
ments, while the agent acts as a bridge, connecting the clients to the broader DDS
network.

Clients interact with the agent to perform operations such as publishing and sub-
scribing to topics within the DDS global dataspace. They also support remote pro-
cedure calls (RPC) as specified by the DDS-RPC standard, enabling communication
through a request/reply mechanism. The agent processes these requests, returns the
status of the operations, and, for subscription or reply-based actions, provides the
requested data.

5.7.1 How Micro XRCE-DDS Works

The Micro XRCE-DDS architecture enables seamless communication between resource-
constrained devices (clients) and the larger DDS network via the agent. The diagram
5.10 illustrates this architecture and its key components.

Figure 5.10: General Micro XRCE-DDS Architecutre.[22]

30

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

1. Micro XRCE-DDS Gen: The Micro XRCE-DDS Generator (Gen) is a tool
that automates the creation of client-side code. It takes user-defined data types
and communication structures as input and generates optimized code that can
run on constrained devices. This simplifies the development process, allowing us
focus on functionality without worrying about low-level implementation details.

2. Micro XRCE-DDS Client: The client is a lightweight software library that
runs on resource-constrained devices, such as drones. It uses the generated code
from Micro XRCE-DDS Gen to interact with the DDS network. The client
handles basic operations like sending data (publishing) or requesting data (sub-
scribing) while minimizing resource usage.

3. Micro XRCE-DDS Agent: The agent acts as a bridge between the client and
the larger DDS network. It translates the client’s lightweight XRCE protocol
messages into standard DDS communication, allowing the client to participate
in the DDS global dataspace. The agent processes requests from the client, and
relays the responses back to the client.

4. Communication Protocol: The client and agent communicate using the XRCE
protocol, which supports multiple transport layers such as UDP, TCP, or serial
communication.

5.7.2 Micro XRCE-DDS Installation & Configuration

The following steps showcase the general steps we took for installing and configuring
Micro XRCE-DDS for our ROS2 workspace:

1. Installing the Java Runtime Environment, which is required for building the
Micro XRCE-DDS generator.

2. Cloning the Micro XRCE-DDS Gen repository.

3. Building the generator. This step compiles the required tools to create the client-
side code for Micro XRCE-DDS.

5.8 MAVROS

MAVROS is a middleware package that acts as a bridge between the ROS2 ecosystem
and the ArduPilot flight stack. It allows for seamless communication between robotic
systems running ROS2 and drones controlled by ArduPilot by utilizing the MAVLink
protocol. This integration enables ROS2 nodes to send commands to and receive
telemetry data from drones.

MAVROS provides interfaces for issuing high-level commands to drones, such as
setting waypoints, adjusting flight modes, or commanding takeoff and landing. Ad-
ditionally, ROS2 nodes can subscribe to telemetry data from drones, including GPS
location, battery levels, velocity, and orientation.

31

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.8.1 MAVROS Installation

To install MAVROS, we followed the following general steps:

1. Installing the main MAVROS package along with its supplementary package,
MAVROS Extras, which includes additional plugins and functionalities.

2. Installing GeographicLib datasets. MAVROS relies on GeographicLib datasets
to handle geographic and geospatial calculations, such as transforming GPS co-
ordinates.

5.9 Hadoop

Drone swarms can generate very large amounts of data, which may need to be store
for further analysis or later use. The storage solution must be able to handle large
throughput while efficiently storing and distributing the data. That’s where Hadoop
comes in.

Hadoop is an open-source framework that facilitates the distributed storage and
processing of massive datasets across clusters of computers. It consists of two core
components: the Hadoop Distributed File System (HDFS), which handles the storage
by breaking data into blocks and distributing them across nodes, and the MapReduce
programming model, which processes the data in parallel across the cluster. Hadoop
is designed to scale horizontally by adding more nodes to the cluster and ensures fault
tolerance through data replication, making it ideal for managing the large, complex
datasets generated by drone swarms.

5.9.1 Hadoop Installation

To install and configure Hadoop, we followed the steps provided by the official doc-
umentation. For demonstration purposes, we installed Hadoop in pseudo-distributed
mode to simulate the cluster environment while remaining on a single machine. The
installation process consists of the following general steps:

1. Installing the Java Development Kit alongside Java Runtime Environment, which
was already installed for Micro XRCE-DDS.

2. Configuring SSH.

3. Configuring environment variables and Hadoop settings.

4. Formatting HDFS and starting Hadoop services

32

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.10 Integration of Hadoop with ROS2

This section demonstrates the integration of Hadoop’s HDFS with ROS2 to enable
real-time transfer and storage of image data. The system is designed to offer seamless
communication between multiple drones and a centralized data storage cluster, ensur-
ing scalability and robustness for applications requiring large-scale data handling. This
setup not only highlights the potential of combining distributed storage systems with
robotics but also provides a foundation for real-time image analysis workflows.

The integration begins with the ROS2 Publisher Node, deployed as the ImagePub-
lisher on each drone. This node reads image data from a local directory using OpenCV
and publishes it as sensor msgs/Image messages via ROS2 topics. Each drone is as-
signed a unique topic, such as /camera/Image1, /camera/Image2, and /camera/Im-
age3, ensuring organized data streams. The modular design of the publisher node
makes it adaptable to additional sensors or data sources, enhancing the flexibility of
the system.

The ROS2 Listener Node, referred to as the HDFSListener, subscribes to the pub-
lished topics and manages the transfer of image data to Hadoop’s HDFS. Upon re-
ceiving the images, the listener node converts them into HDFS-compatible formats
and utilizes Python’s HDFS client library to store them in the cluster. The diagram
5.11 illustrating how data flows from drones to the HDFS cluster through the ROS2
communication framework.

Figure 5.11: Hadoop integration flow.

The system enables centralized storage of drone-captured images, paving the way
for future enhancements such as real-time preprocessing before storage or expanding
the pipeline to support additional data modalities.

33

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

5.11 YOLOv11

YOLO (You Only Look Once) is a family of real-time object detection models known for
their speed and accuracy. YOLOv11, the latest iteration, builds upon its predecessors
by introducing improved architecture ensuring higher detection accuracy with reduced
computational overhead. This makes it particularly suitable for applications requiring
real-time inference on edge devices, such as drones in a swarm.

For this project, we chose the YOLOv11-S (Small) variant due to its balance be-
tween computational efficiency and detection performance. Drones operate under strict
resource constraints. The small-size model allows the drones to run object detection
tasks efficiently while maintaining a sufficient level of accuracy for object detection.

Figure 5.12: YOLOv11 model architecture[19].

5.11.1 Implementation in the Drone Swarm

Each drone in the swarm is equipped with its own YOLOv11 node, implemented as
a ROS2 component for modularity and integration with other system components.
The YOLO node is responsible for processing the drone’s onboard camera feed and
publishing real-time object detection results.

The YOLO node is designed to process the drone’s camera feed in real time. It sub-
scribes to the camera feed, which is published as a ROS2 topic, and uses the YOLOv11-
S model to analyze incoming frames. This analysis generates detection results, includ-
ing object classes, bounding box coordinates, and confidence scores. The processed
results are then published to a dedicated ROS2 topic, making them accessible to other
components within the system.

The YOLO node’s predictions are streamed as a ROS2 topic in a structured format.
Each message a list of detected objects with class labels, bounding boxes, and confi-
dence scores. The detection results can be displayed in RViz, a powerful visualization
tool in ROS2, to monitor the drone’s real-time object detection performance. And for

34

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

long-term analysis, the detection stream is stored in Hadoop Distributed File System
(HDFS). A dedicated ROS2 node subscribes to the YOLO prediction topic, converts
the data into a suitable format, and uploads it to the HDFS cluster.

5.12 Drone Swarm Auto Setup Package

The drone swarm auto setup package is a robust and efficient solution for automating
the configuration of drone swarms. This package generates the necessary resources and
configurations to streamline the setup process, enabling the deployment of multiple
drones with minimal manual intervention. It supports seamless integration with ROS2,
ArduPilot SITL, and Gazebo simulation environments.

Additionally, the drone swarm environment setup.sh is a comprehensive tool de-
signed to streamline the setup of the development environment for the drone swarm
framework. This shell script automates the installation and configuration of essen-
tial components, including ROS2 Humble, ArduPilot SITL, and the Gazebo simu-
lation environment. It also installs all necessary dependencies for MAVROS and the
ArduPilot-Gazebo plugin. Also, the script creates the required directory structure, sets
up environment variables, and configures project-specific templates and integrations.

drone swarm auto setup pkg

created resources

config iris bridge

launch

models

worlds

drone swarm auto setup pkg

package.xml

resource

scripts drone swarm auto setup.py

setup.cfg

setup.py

templates

config iris bridge

launch robots

models iris with gimbal

worlds

test

35

CHAPTER 5. PREPARING THE ENVIRONMENT Drones Project

1. Templates
Templates provide pre-configured files for various resources required by the drone
swarm:

• Config: YAML configurations for ROS-Gazebo bridges (e.g., iris bridge.yaml).

• Launch: Launch files for individual drones and the swarm (e.g., drone swarm launch.py).

• Models: Gazebo-compatible drone models (e.g., iris with gimbal).

• Worlds: Gazebo simulation environments (e.g., iris runway.sdf).

2. Created Resources
The created resources directory is dynamically populated during the setup
process. It includes:

• Config: Generated YAML files for each drone’s bridge.

• Launch: Generated launch files for the swarm.

• Models: Customized drone models with unique configurations.

• Worlds: Simulation worlds updated with the specified drone swarm.

3. Scripts
drone swarm auto setup.py

This script automates the setup of the drone swarm. It creates unique config-
urations for each drone in the swarm, Generates Gazebo models with unique
parameters (e.g., fdm port in). Then it updates the Gazebo world to include all
drones. And finally, it creates unique ROS-Gazebo bridge configurations.

36

6 — Reinforcement Learning Agent
Development & Integration

This chapter explains the role of the reinforcement learning (RL) framework employed
in the project, alongside the specific RL algorithm used. The focus is on how the RL
agents were designed, trained, and integrated into the drone swarm system to achieve
optimal pathfinding capabilities.

In this project, the RL agents play a critical role in pathfinding for the swarm.
Starting from a centralized spawn point, each drone in the swarm is assigned a unique
target located within houses. The RL agent on each drone is responsible for determining
the optimal path to reach its target, navigating through the complex environment of
houses.

The primary objective of this chapter is to showcase how the RL agents were devel-
oped to autonomously find optimal paths, demonstrating their capability to navigate
challenging environments effectively. This functionality directly supports the broader
project goal of achieving autonomous drone swarm control, where drones operate with
minimal human intervention.

6.1 Reinforcement Learning Basics

Reinforcement Learning (RL) is a type of machine learning where agents learn to make
decisions by interacting with their environment. The agent receives feedback in the
form of rewards or penalties, allowing it to learn strategies that maximize cumulative
rewards over time. In this project, RL is the key mechanism enabling drones to navigate
autonomously through complex environments.

Figure 6.1: The Markov Decision Process

37

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

A tailored approach, termed Centralized Planning with Decentralized Execution
(CPDE), is utilized to coordinate the swarm. In this framework, task allocation is
handled centrally by a simple greedy algorithm that assigns targets to drones based on
simple heuristics (e.g. smallest Manhattan distance). This centralized planner uses the
global knowledge of the environment. Once targets are assigned, each drone operates
independently, using its RL agent to determine the optimal path to its designated
target.

Figure 6.2: CPDE basic workflow

The RL algorithm chosen for this project is Advantage Actor-Critic (A2C). A2C is
a policy-gradient algorithm that uses two networks: an actor network, which decides
the actions the agent should take, and a critic network, which evaluates the quality
of those actions. This approach was selected for its balance between computational
efficiency and robust performance in discrete action spaces.

To implement and train the RL agents, we used OpenAI Gymnasium to define
the simulation environment and Stable Baselines3 for RL algorithm implementations.
These tools provided a structured framework for developing and testing the agents.

Several critical RL concepts were applied during development:

1. Learning Curriculums: The RL agents were trained in progressively complex
environments, starting with simple obstacle-free scenarios and gradually intro-
ducing challenges like narrow corridors. This approach enabled the agents to
build foundational skills before tackling more difficult tasks.

2. Exploration vs. Exploitation: Balancing exploration (trying new actions to
discover better strategies) and exploitation (using known strategies to maximize
rewards) was crucial for effective learning.

3. Reward Shaping: The reward function was carefully designed to encourage

38

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

efficient pathfinding while penalizing collisions or excessive energy use. Reward
signals were refined iteratively to ensure that agents learned desired behaviors.

6.2 Design of the RL Agent

The design of the reinforcement learning (RL) agent in this project focuses on enabling
efficient pathfinding for drones to locate targets hidden within houses. The primary
challenge lies in navigating environments where house walls serve as obstacles, making
it essential for the agent to avoid collisions while finding the shortest path to its target.

6.2.1 Problem Definition

The RL agent’s task is to determine an optimal path to its assigned target, navigating
around obstacles and minimizing unnecessary movements. The problem is made unique
by the need to avoid house walls and by the hidden nature of the target, which requires
intelligent decision-making at each step, accounting for long term rewards.

Figure 6.3: grid environment for the agents. The 3 blue points in the center are the
drones at their launch position, and the red dots are the targets

6.2.2 State Space

The state space (or observation space) defines the information available to the agent at
any given moment, allowing it to perceive its environment and make decisions. For our
reinforcement learning setup, the state space for each agent consists of the following
components:

The state space for each agent comprises:

1. Agent’s position: The current (x, y) coordinates of the drone.

2. Target’s position: The (x, y) coordinates of the assigned target.

Additionally, a complete representation of the environment, including walls and
open spaces, was provided to the agents during training. Ideally, we would have pre-
ferred for each drone to simultaneously find its optimal policy while also mapping the
environment. But that goes well beyond the scope of our project.

39

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

These inputs were chosen to strike a balance between providing the agent with
sufficient information for effective decision-making and maintaining computational ef-
ficiency. By minimizing unnecessary or redundant information, we ensure that the
agent can process its state space efficiently while still being capable of navigating com-
plex environments and completing assigned tasks.

6.2.3 Action Space

The action space defines the set of all possible actions that the agent can take at any
given state. For our reinforcement learning agent, a discrete action space was chosen,
meaning the agent selects from a predefined set of distinct actions. This discrete ap-
proach simplifies both the implementation and the training process while still enabling
versatile behavior.

The available actions in the action space allow the agent to take a step into any
cell in its neighboring window (up, down, right, left, up-right, up-left, down-right,
down-left).

This discrete action space was selected for its simplicity, reducing computational
complexity while still offering sufficient maneuverability for effective navigation within
the environment. Unlike continuous action spaces, which allow an infinite range of
actions and require complex function approximations, discrete action spaces are com-
putationally efficient and easier to integrate with standard reinforcement learning al-
gorithms.

6.2.4 Reward Function

The reward function was designed to guide the agent’s learning process by incentivizing
desirable behaviors and penalizing undesired ones. This helps the agent learn efficient
pathfinding strategies while avoiding redundant or harmful actions. The table 6.1
summarizes the reward structure:

Table 6.1: Reward function structure for the RL agent.
Trigger Reward Explanation
Each step taken −1 Encourages the agent to find optimal paths.
Revisiting the
same cell

−2 Discourages redundant paths to improve
search efficiency and avoid wasting steps.

Attempting to
move into a wall

−3 Penalizes collision attempts to reinforce ob-
stacle avoidance.

Moving closer to
the target

+0.5× (old distance−
new distance)

Rewards the agent for reducing its distance
from the target and penalizes moving further
away.

Successfully
reaching the
target

+100 Strongly incentivizes completing the task to
ensure the agent prioritizes reaching the tar-
get.

40

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

This reward function was iteratively refined to balance penalties and rewards effec-
tively. The system motivates the agent to adopt strategies that minimize unnecessary
actions, avoid collisions, and efficiently navigate toward the target, ultimately improv-
ing overall performance and decision-making.

6.3 RL Agent Development

The development of the reinforcement learning (RL) agent was centered on using widely
recognized frameworks and designing a neural network to ensure effective learning and
consistent performance. The project utilized the following tools and frameworks:

1. OpenAI Gymnasium
Served as the simulation environment, providing a grid-based world where the
agent could interact and learn. Gymnasium was chosen for its flexibility, ease of
customization, and wide adoption in the RL research community.

2. Stable Baselines3 (SB3)
Used to implement the RL algorithms. SB3 is a popular library that supports
multiple RL algorithms, offering well-tested implementations and extensive doc-
umentation. Its integration with Gymnasium enabled a seamless development
experience and expedited troubleshooting.

6.3.1 Model Architecture

The RL agent’s neural network employs a fully connected architecture, shared by both
the policy (actor) and value (critic) functions. This design ensures computational
efficiency and effective learning. The architecture includes:

1. Input Layer
Processes the agent’s state representation, which includes the agent’s position,
the target’s position.

2. Hidden Layers
Two fully connected layers, each with 64 units, use ReLU (Rectified Linear Unit)
activation functions.

3. Output Layer
For the actor, the output layer generates action probabilities for the discrete
action space. For the critic, the output layer provides an estimate of the value
function, which evaluates the expected future rewards from a given state.

This architecture was chosen for its simplicity and effectiveness. We were able
to maintain computational efficiency with this architecture which is crucial for drone
swarm environments.

41

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

6.3.2 Training Process

The RL agent was trained in a simulated, grid-based environment implemented using
Gymnasium. The training process followed an episodic design, where each episode
began with the agent at a predefined starting position. The agent’s objective was
to navigate to the target within a fixed number of steps. Key hyperparameters used
during training are shown in table 6.2

Table 6.2: Hyperparameters used during RL agent training.
Hyperparameter Value Explanation
Learning rate 0.0007 Controls the step size during gradient de-

scent.
Discount factor (γ) 0.8 Balances immediate vs. future rewards.
Entropy coefficient
(ent coef)

0.001 Encourages exploration by adding random-
ness to the policy.

Value function coeffi-
cient (vf coef)

0.5 Balances the weight of the value function loss
in the total loss function.

Max gradient norm 0.5 Limits the magnitude of gradients to prevent
instability during training.

Number of steps per up-
date (n steps)

20 Specifies the number of steps collected before
updating the policy.

These hyperparameters were tuned iteratively to ensure stability during training
and to encourage an optimal balance between exploration and exploitation.

6.3.3 Challenges and Solutions

During development, the agent encountered significant difficulty navigating through
doors into houses, as these tasks required precise spatial understanding.

To address this, a curriculum learning approach was adopted. The agent was first
trained to complete a simpler task of reaching the door. This allowed it to develop basic
navigation skills and an understanding of the environment layout. Once proficient at
reaching doors, the training task was extended to include navigating inside houses to
locate the target. This incremental learning strategy enabled the agent to gradually
adapt to more complex scenarios.

By breaking down the task into manageable stages, the agent was able to build
foundational skills before tackling the full problem, resulting in improved performance
and reliability.

6.4 Integration with the Drone Swarm System

Integrating the reinforcement learning (RL) agent into the drone swarm system involved
establishing seamless communication, deploying the trained RL model, and ensuring
effective operation in both simulation and real-world environments.

42

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

6.4.1 Communication Setup

All communication within the system is managed using ROS2, with MAVROS serving
as the bridge between the ROS2 nodes and the drones. MAVROS facilitates the ex-
change of positional data and command execution. This setup allows the RL agents
to receive real-time position updates and send movement commands to the drones.

6.4.2 Deployment Pipeline

The deployment of the RL agent follows a centralized-to-decentralized process:

1. A centralized Drone Controller Node in ROS2 identifies all active drones in the
system.

2. The controller instantiates a unique RL agent instance for each drone and assigns
a target based on the task allocation algorithm.

3. The RL agent communicates with the drone through MAVROS:

• Inputs: The drone’s current state (drone position and target position),
obtained via MAVROS.

• Outputs: The agent’s action predictions are translated into MAVROS com-
mands, directing the drone to take a step in a specific direction.

The system also includes a command override mechanism to handle critical situa-
tions:

• If an obstacle is detected, the drone ignores RL agent commands to avoid colli-
sions.

• When the battery level drops below 10%, the drone automatically returns to its
launch point.

• Upon detecting a person (target) using the YOLO, the drone immediately lands
to signify task completion.

6.4.3 Simulation-to-Real Transfer

The RL agent was trained in a simplified 2D grid simulation, while the real-world
implementation operates in a 3D environment simulated in Gazebo. Despite the 3D
complexity, the project treats the environment as effectively 2D for decision-making
purposes, reducing the gap between the training and deployment domains.

6.5 Testing and Evaluation

The testing and evaluation phase focused on observing the performance of the reinforce-
ment learning (RL) agents in both training and simulation environments. The training
process and results provided key insights into the agents’ capabilities and limitations.

43

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

6.5.1 Evaluation During Training

Two primary performance indicators were tracked during training:
Mean Episode Length: The average number of steps taken per episode. This

metric decreased exponentially as training progressed, eventually plateauing, indicating
that the agents were learning to minimize unnecessary steps and find more efficient
paths.

Figure 6.4: Average number of steps per episode over all timesteps plot.

Mean Rewards per Episode: The average reward accumulated per episode.
This metric increased exponentially and plateaued as the agents learned to maximize
rewards by reaching their targets efficiently while avoiding penalties.

Figure 6.5: Average rewards per episode over all timesteps plot.

6.5.2 Simulation Results

The RL agents were tested in the 2D grid simulation environment, where they con-
sistently exhibited excellent performance. Agents reliably selected the optimal paths
to their targets, minimizing travel distance and avoiding obstacles. The behavior pat-
terns observed in the simulation confirmed the agents’ ability to effectively balance
exploration and exploitation during navigation tasks. The figure 6.6 showcases a single
agent moving towards a single target with our trained policy.

44

CHAPTER 6. REINFORCEMENT LEARNING AGENT DEVELOPMENT &
INTEGRATION Drones Project

Figure 6.6: Single agent going towards a target.

6.5.3 Limitations

Despite their strong performance, the RL agents have some limitations. The cur-
rent design does not account for obstacles that appear dynamically during execution.
Agents are limited to navigating within a static environment, and incorporating dy-
namic obstacle handling would improve adaptability. Additionally, While the 2D grid
environment simplifies training and deployment, extending the agent’s decision-making
capabilities to account for real-world 3D complexities could enhance robustness.

45

7 — Conclusion

7.1 Project Summary

This project explored the development and coordination of a drone swarm system.
By utilizing a centralized planning and decentralized execution approach, we aimed to
enhance the efficiency and reliability of multi-drone systems for real-world applications.

We began by establishing foundational knowledge about drones, their applications,
and the motivations for developing swarm coordination systems. We reviewed existing
technologies and identified their limitations, highlighting gaps this project sought to
address. The preparation of the development environment included the integration of
various tools, such as ArduPilot, MAVProxy, Gazebo, ROS2, and Hadoop, ensuring a
robust simulation and testing framework.

The reinforcement learning (RL) agent was designed to enable autonomous coordi-
nation of the drone swarm. The agent’s state space aggregated critical environmental
and drone-specific data, while its action space provided a set of commands for effective
navigation and task execution. We defined a reward function tailored to the objectives
of path finding.

During development, we implemented and tested the RL agent’s model architecture
and training pipeline, addressing several challenges such as optimizing training stability
and ensuring simulation-to-real transferability. The integration of the RL agent with
the drone swarm system was a significant milestone, involving communication setup
and deployment pipelines. Testing and evaluation demonstrated promising simulation
results, despite acknowledged limitations related to dynamic environments and marking
revisited targets.

7.2 Future Work

The completion of this project opens multiple avenues for further research and devel-
opment:

1. While this project focused on static environments, incorporating dynamic ele-
ments such as moving obstacles or evolving disaster scenarios would enhance the
system’s adaptability.

2. Implementing mechanisms to mark and remember previously visited targets would
improve search efficiency and reduce redundant exploration.

46

CHAPTER 7. CONCLUSION Drones Project

3. Including additional parameters like wind speed, temperature, and terrain eleva-
tion could enable the RL agent to make more informed decisions.

4. Transitioning from simulation to real-world implementation is critical for validat-
ing the system’s effectiveness. This includes hardware testing, field trials, and
integrating feedback from disaster response teams.

5. Investigating scalability to larger drone swarms with more diverse capabilities
could expand the system’s applicability to a broader range of missions.

6. Improving energy efficiency by optimizing flight paths and task assignments
would prolong mission durations and reduce operational costs.

7. Exploring decentralized learning approaches, where drones share experiences in
real time, could further enhance the swarm’s collective intelligence.

This project represents a significant step toward advancing drone swarm technology
for disaster response. All source code, documentation, and resources will be made
available on our project website here: https://drone-swarm-project-hu.web.app/

47

Bibliography

[1] Commercial drone market. https://www.fortunebusinessinsights.com/

commercial-drone-market-102171.

[2] Unmanned aerial vehicles (uav) market. https://www.marketsandmarkets.com/
Market-Reports/unmanned-aerial-vehicles-uav-market-662.html.

[3] ArduPilot Development Team. ArduPilot Documentation, 2024. URL https:

//ardupilot.org/. Accessed: 2024-05-15.

[4] Godwin Asaamoning, Paulo Mendes, Denis Rosário, and Eduardo Cerqueira.
Drone swarms as networked control systems by integration of networking and
computing. Sensors, 21(8), 2021. ISSN 1424-8220. doi: 10.3390/s21082642. URL
https://www.mdpi.com/1424-8220/21/8/2642.

[5] Inphoenix Aviation. Comparative analysis of uav ground control stations: Mission
planner, qgroundcontrol, ugcs, betaflight, and inav. Inphoenix Aviation, 2024.
URL https://inphoenixaviation.com.

[6] Tomas Baca, Matej Petrlik, Matous Vrba, Vojtech Spurny, Robert Penicka,
Daniel Hert, and Martin Saska. The mrs uav system: Pushing the frontiers of
reproducible research, real-world deployment, and education with autonomous
unmanned aerial vehicles. Journal of Intelligent amp; Robotic Systems, 102
(1), April 2021. ISSN 1573-0409. doi: 10.1007/s10846-021-01383-5. URL
http://dx.doi.org/10.1007/s10846-021-01383-5.

[7] Jovan Boskovic, Nathan Knoebel, Nima Moshtagh, Jayesh Amin, and Gregory
Larson. Collaborative mission planning autonomous control technology (compact)
system employing swarms of uavs. 08 2009. ISBN 978-1-60086-978-5. doi: 10.
2514/6.2009-5653.

[8] Civil Aviation Regulatory Commission. Jordanian civil aviation regulation: Un-
manned aircraft systems and operations. https://carc.gov.jo/pdf/CARC_UAV_
Operations2.docx, October 2019.

[9] Ebrahimi and John Page. Uav swarm search strategy applied to chaotic ship
wakes. 02 2013.

48

https://www.fortunebusinessinsights.com/commercial-drone-market-102171
https://www.fortunebusinessinsights.com/commercial-drone-market-102171
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://ardupilot.org/
https://ardupilot.org/
https://www.mdpi.com/1424-8220/21/8/2642
https://inphoenixaviation.com
http://dx.doi.org/10.1007/s10846-021-01383-5
https://carc.gov.jo/pdf/CARC_UAV_Operations2.docx
https://carc.gov.jo/pdf/CARC_UAV_Operations2.docx

BIBLIOGRAPHY Drones Project

[10] eProsima. Micro xrce-dds. https://github.com/eProsima/Micro-XRCE-DDS,
2024. URL https://github.com/eProsima/Micro-XRCE-DDS. Accessed: 2024-
12-27.

[11] Aleksandar Erceg, Biljana Činčurak Erceg, and Aleksandra Vasilj. Unmanned
aircraft systems in logistics – legal regulation and worldwide examples toward use
in croatia. 10 2017.

[12] Miguel Fernandez-Cortizas, Martin Molina, Pedro Arias-Perez, Rafael Perez-
Segui, David Perez-Saura, and Pascual Campoy. Aerostack2: A software frame-
work for developing multi-robot aerial systems, 2023.

[13] MAVLink Development Team. MAVLink Micro Air Vehicle Communication Pro-
tocol, 2024. URL https://mavlink.io/en/. Accessed: 2024-05-15.

[14] Ivana Palunko, Rafael Fierro, and Patricio Cruz. Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic programming
approach. 2012 IEEE International Conference on Robotics and Automation,
pages 2691–2697, 2012. URL https://api.semanticscholar.org/CorpusID:

18475577.

[15] Lenka Pitonakova. Foraging strategies in nature and their application to swarm
robotics. 2013. URL https://api.semanticscholar.org/CorpusID:163161196.

[16] PX4 Development Team. PX4 Autopilot User Guide, 2024. URL https://docs.

px4.io/main/en/. Accessed: 2024-05-15.

[17] Intelligent Quads. Intelligent quads: Autonomous drones and swarm robotics.
https://intelligentquads.com. Accessed: 2024-05-16.

[18] Aravinda S. Rao, Marko Radanovic, Yuguang Liu, Songbo Hu, Yihai Fang,
Kourosh Khoshelham, Marimuthu Palaniswami, and Tuan Ngo. Real-time mon-
itoring of construction sites: Sensors, methods, and applications. Automation
in Construction, 136:104099, 2022. ISSN 0926-5805. doi: https://doi.org/10.
1016/j.autcon.2021.104099. URL https://www.sciencedirect.com/science/

article/pii/S0926580521005501.

[19] S. Nikhileswara Rao. Yolov11 architecture explained: Next-
level object detection with enhanced speed and accuracy, Oc-
tober 22 2024. URL https://medium.com/@nikhil-rao-20/

yolov11-explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71.
Accessed: 2025-01-04.

[20] Shanza Shakoor, Zeeshan Kaleem, Muhammad Iram Baig, Omer Chughtai,
Trung Q. Duong, and Long D. Nguyen. Role of uavs in public safety commu-
nications: Energy efficiency perspective. IEEE Access, 7:140665–140679, 2019.
doi: 10.1109/ACCESS.2019.2942206.

49

https://github.com/eProsima/Micro-XRCE-DDS
https://github.com/eProsima/Micro-XRCE-DDS
https://mavlink.io/en/
https://api.semanticscholar.org/CorpusID:18475577
https://api.semanticscholar.org/CorpusID:18475577
https://api.semanticscholar.org/CorpusID:163161196
https://docs.px4.io/main/en/
https://docs.px4.io/main/en/
https://intelligentquads.com
https://www.sciencedirect.com/science/article/pii/S0926580521005501
https://www.sciencedirect.com/science/article/pii/S0926580521005501
https://medium.com/@nikhil-rao-20/yolov11-explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71
https://medium.com/@nikhil-rao-20/yolov11-explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71

BIBLIOGRAPHY Drones Project

[21] Daniel H. Stolfi, Matthias R. Brust, Grégoire Danoy, and Pascal Bouvry. A coop-
erative coevolutionary approach to maximise surveillance coverage of uav swarms.
In 2020 IEEE 17th Annual Consumer Communications Networking Conference
(CCNC), pages 1–6, 2020. doi: 10.1109/CCNC46108.2020.9045643.

[22] ArduPilot Development Team. Micro xrce-dds generator (micro-xrce-dds-gen).
https://github.com/ardupilot/Micro-XRCE-DDS-Gen, 2024. URL https://

github.com/ardupilot/Micro-XRCE-DDS-Gen. Accessed: 2024-12-27.

[23] Yubing Wang, Peng Bai, Xiaolong Liang, Weijia Wang, Jiaqiang Zhang, and Qixi
Fu. Reconnaissance mission conducted by uav swarms based on distributed pso
path planning algorithms. IEEE Access, 7:105086–105099, 2019. doi: 10.1109/
ACCESS.2019.2932008.

[24] Kunlun Wei, Tao Zhang, and Chuanfu Zhang. Research on resilience model of
uav swarm based on complex network dynamics. Eksploatacja i Niezawodność –
Maintenance and Reliability, 25(4), 2023. ISSN 1507-2711. doi: 10.17531/ein/
173125. URL https://doi.org/10.17531/ein/173125.

[25] A. N. Wilson, Abhinav Kumar, Ajit Jha, and Linga Reddy Cenkeramaddi. Em-
bedded sensors, communication technologies, computing platforms and machine
learning for uavs: A review. IEEE Sensors Journal, 22(3):1807–1826, 2022. doi:
10.1109/JSEN.2021.3139124.

[26] Yongkun Zhou, Bin Rao, and Wei Wang. Uav swarm intelligence: Recent advances
and future trends. IEEE Access, 8:183856–183878, 2020. doi: 10.1109/ACCESS.
2020.3028865.

50

https://github.com/ardupilot/Micro-XRCE-DDS-Gen
https://github.com/ardupilot/Micro-XRCE-DDS-Gen
https://github.com/ardupilot/Micro-XRCE-DDS-Gen
https://doi.org/10.17531/ein/173125

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	What are Drones?
	Applications of Drones
	Aerial Photography and Videography
	Delivery and Logistics
	Agriculture and Farming
	Other Notable Uses

	Types of UAVs
	Regulations and Safety Considerations
	Drone Registration and licensing
	No-Fly Zones and Restricted Areas
	Privacy and security concerns

	What are Drone Swarms?
	Motivation
	Problem Statement
	Specific challenges in drone swarm coordination
	Relevance to Real-World Scenarios
	Research Questions

	Literature Review
	Existing Systems
	Collaborative Mission Planning & Autonomous Control Technology (CoMPACT) System
	Aerostack2
	AerialCore

	Limitations in Existing Systems

	Preparing the Environment
	Drone System Overview
	Choosing the Right Flight Stack
	ArduPilot Introduction & Installation
	MAVLink Protocol
	Software in the Loop (SITL) Simulation
	MAVProxy

	Ground Control Station
	Comparing different GCSs
	QGroundControl Installation & Testing

	Gazebo
	Gazebo Introduction
	Gazebo Installation & Testing

	Testing Intelligent Drone Navigation
	ROS2
	ROS2 Introduction
	Communication Between Nodes
	The DDS Middleware
	ROS2 Installation

	Micro XRCE-DDS
	How Micro XRCE-DDS Works
	Micro XRCE-DDS Installation & Configuration

	MAVROS
	MAVROS Installation

	Hadoop
	Hadoop Installation

	Integration of Hadoop with ROS2
	YOLOv11
	Implementation in the Drone Swarm

	Drone Swarm Auto Setup Package

	Reinforcement Learning Agent Development & Integration
	Reinforcement Learning Basics
	Design of the RL Agent
	Problem Definition
	State Space
	Action Space
	Reward Function

	RL Agent Development
	Model Architecture
	Training Process
	Challenges and Solutions

	Integration with the Drone Swarm System
	Communication Setup
	Deployment Pipeline
	Simulation-to-Real Transfer

	Testing and Evaluation
	Evaluation During Training
	Simulation Results
	Limitations

	Conclusion
	Project Summary
	Future Work

